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Chapter 1 Introduction 

1.1 Problem Statement 

High tension cable guardrail is becoming increasingly popular in median and roadside 

applications due to the promise of reduced deflections upon impact and reduced maintenance. 

These systems show better performance in redirecting vehicles and preventing median 

crossovers than traditional low-tension cable guardrail systems. These high tension systems have 

also been shown to be more easily repairable with the undamaged lengths functioning properly 

throughout the repair process. As the performance of these systems is observed in service, there 

is a growing concern over the end anchorage foundation performance of current systems. 

Foundations for high tension systems must not only be capable of restraining the impact load of a 

vehicle, but must also restrain the initial pretension on the cable system as well as temperature 

induced loads. While it may be acceptable for many roadside safety devices to require 

foundation repair after impact, foundation failure due to environmentally induced loads would be 

a serious maintenance problem. As temperature induced loads can be greater than those loads 

applied during impact, these loadings must be considered in foundation design. Foundation 

deflection can reduce cable tension, increasing deflection of the system during impact and letting 

the cables sag after impact. The soil conditions in which these foundations are placed vary 

significantly. A soil specific foundation design would assure the functionality of these high 

tension systems. 
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Figure 1.1 Brifen High tension Wire Rope Safety Fence (TL-4) 

 

1.2 Objective 

The objective of this project is to assess foundation alternatives based on a selected suite 

of potential in situ soils to provide states with a rational, cost effective basis for specifying 

foundations in these critical barrier systems. 

1.3 Research Scope 

A literature research was conducted first. Analyses were then performed to investigate 

the thermal effects on the changes in cable tension, cable length, and foundation loads. The 

computer software Barrier VII was used to run simulations to evaluate the effect of foundation 

deflection on pre-tension and ultimately the high tension cable’s redirecting capability. Further 

investigations were made into the effects of cable’s tension change on the high tension cable’s 

maximum lateral deflection during impact, and to determine the acceptable range of the 

anchorage’s deflection.  
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An ideal anchorage design is desired to limit its deflection within a certain acceptable 

range throughout the year-round temperature fluctuations with minimum construction cost. 

Previous bogie tests conducted by MwRSF were reviewed to evaluate the existing common 

anchorage types and choose a proper design. The computer software LPILE was then used to 

evaluate the different anchorage designs in different soil conditions and to evaluate their 

foundation deflection in each respective soil. Three soil types were selected to represent soil 

conditions in various geographic regions: 350 soil (stiff), clay (medium), and sand (soft). 

Finally, a guideline was developed for proper anchorage design in different soil types to 

resist the thermal expansion/contraction effect and maintain the high tension cable system’s 

performance. A summarized version of the findings presented in this report was also submitted 

to the Transportation Research Board (1). 
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Chapter 2 Thermal Effects on Cable 

The contraction of the cable due to a drop in temperature can generate significant load on 

the end anchorage, which may cause permanent deflection in the foundations, thus reducing 

cable tension and potentially affecting the high tension cable’s performance. The impact of these 

thermal loads will be especially significant during seasons where soil stiffness is reduced by high 

moisture content. 

Analyses were performed herein to investigate the thermal effects on cable structure. 

Two extreme scenarios were investigated—Extreme Stiff Anchorage, and Extreme Weak 

Anchorage—covering cable tension changes on a fixed length cable and cable length change on 

a free end cable, respectively. 

2.1 Thermal Load Change on a Fixed Length Cable 

If it is assumed that the foundation is infinitely stiff, the thermal load change in the cable 

can be calculated using Eq. 1—this load is independent of the cable’s original length. Assuming 

the cable’s design tension is 4,200 lb at 110 F, the tensile load in the cable versus temperature is 

shown in Figure 2.2, the cable tension can reach up to 7,000 lb when the temperature drops to -

20 F. Thus, for the 4-cable barrier, the load on the anchor caused by the temperature could be as 

high as 28 kips. Also, it was concluded from Eq. 1 that the thermal load change depends on the 

cable structures’ cross sectional area, and is independent of the cable’s original length. Thus, for 

various cable installation lengths, the thermal loads on the end anchors are the same.  
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Figure 2.1 Illustration of Baseline Structure for Thermal Load Analysis 

 
∆F=A*E**∆T                                                                                                                                             Eq. 1 

 

A: Cable Cross Section Area    

E: Cable Material Young’s Modulus 

: Thermal Expansion Coefficient   

∆T: Temperature Change 

 

 
Figure 2.2 Thermal Load in Fixed Length Cable 
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2.2 Thermal Deflection with Constant Cable Tension 

For a weak anchor design, the cable’s actual length contracts when the ambient 

temperature drops. The thermal effect on the cable length change was investigated herein, 

assuming the end anchors are extremely weak and the cable can freely contract when the 

temperature changes.  

A cable was fixed at one end, and the other end was allowed to extend and contract freely 

due to temperature change, as shown in Figure 2.4. Based on Eq. 2, calculations were performed 

to determine the cable length change due to temperature change. Since the length change is 

related to the cable’s original length, four different length cables were analyzed: 1 mile, ½ mile, 

¼ mile, and 
1
8 mile. The baseline temperature was 110 F.  

Nine different temperature points were calculated, ranging from -20 F to 120 F. 

Corresponding results are shown in Figure 2.5 and Table 2.1, and indicate that, for a one-mile 

cable system, the cable can contract as much as 50 inches due to the temperature change if the 

anchor is not properly designed. 

∆L=*L*∆T                                                                                                                                                            Eq. 2 

 

L: Cable Original Length    

: Thermal Expansion Coefficient  

∆T: Temperature Change:   

∆L: Cable Length Change 

 

2.3 Summary and Conclusions 

From this analysis, shown in Figure 2.2, it is clear that the change of temperature can 

have a significant effect on the cable tension. For a cable system built with a designed tension of 

4,200 lb at the temperature of 110 F, when the ambient temperature drops to -20 F, each cable 

can have an extra 2,800 lb force, which is 66% more than its original designed load. Since a 
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single cable will not yield until 28,000 psi, this temperature fluctuation is not going to cause 

yielding, and the analysis conducted with the assumption of elastic behavior is valid. 

Meanwhile, the temperature change can result in cable length change and move the end 

anchors if the anchors are not properly designed. The length change is related to the cable’s 

original length, and for a one mile long cable, the length change can be as much as 50 in. due to 

temperature fluctuations. 
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Chapter 3 BARRIER VII Analysis 

A significant advantage of high tension cable systems is believed to be the reduced 

amount of lateral deflection during impact as compared to a low-tension system. As previously 

discussed, inadequate anchorage designs might be compromised by temperature induced loads. 

Subsequent cable tension will be reduced by the anchorage movement, which will increase the 

lateral impact deflection and compromise the cable’s redirecting ability. In order to quantify the 

cable’s tension effect on its lateral deflection during impact, BARRIER VII simulation was used 

to predict the dynamic performance of high tension cable system under different cable tensions. 

This analysis consisted of a calibration process and a tension-deflection analysis. 

3.1 BARRIER VII Model 

To evaluate the impact of loss in cable tension associated with anchor deflection, a series 

of BARRIER VII simulations were performed to assess working width changes in the system. 

The model has a length of 606 ft with a line post spacing of 16 ft. The two ends of the cable 

system were simplified with one end post on each end. Due to the limitations of BARRIER VII, 

only two cables can be modeled despite the fact that there are 4 cables in the actual system. The 

choice of cables depended on the particular impact case. The two cables that were perceived to 

carry most of the load from the impact in the previous full scale crash test were chosen for the 

BARRIER-VII model. 

3.2 BARRIER VII Model Validation 

In the test of 4CMB-1, a 2270P pickup truck ran off a ditch and impacted the cable at the 

point at 3 ft downstream of Post no. 15, as shown in Figure 3.1. Since the major vehicle 

interaction occurred on the top two cables in test 4CMB-1, the two cable heights in the 

BARRIER VII model were set to 35 inches and 45 inches respectively. A baseline high tension 
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cable barrier model was built using BARRIER VII to replicate the previously conducted full-

scale crash test 4CMB-1, the validation results are shown in Figure 3.2.  

The 4CMB test series was used for the validation because they are the only full-scale 

tests that have been conducted on the MwRSF high tension cable system so far. However, 

BARRIER-VII is a 2-D program and can only model flat vehicle-barrier impacts. In order to 

minimize the discrepancy, 4CMB-1 was chosen for the validation since, of the three tests run, it 

exhibited the smallest diving angle. 

The model was run with various cable pre-tensions and the cable’s maximum lateral 

dynamic deflections for each of the pre-tension levels were recorded; the results are plotted in 

Figure 3.3. The impact of the increased lateral deflection on system design depends on the 

requirements for a given installation.  

 

Figure 3.1 Vehicle-Cable Impact of Test 4CMB-1 

 

The cable’s dynamic deflection during impact is difficult to track during impact and, as 

such, is unavailable. Consequently, the trajectory data of the vehicle’s C.G. acquired from the 

overhead high-speed film was used to calibrate the BARRIER VII simulation to the 4CMB-1 

test. For the validation effort, several simulations were performed at the impact condition of the 

crash test in order to calibrate selected BARRIER VII input parameters.  
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Figure 3.2 Validation of B7 Model with Full-Scale 4CMB-1 
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3.3 BARRIER VII Analysis 

Once the calibration effort was completed for test 4CMB-1, simulations to investigate the 

cable’s tension effect on its maximum lateral deflection during impact were initiated using the 

same parameters determined in the 4CMB-1 validation effort.  

In the case of test no. 4CMB-1, the pickup truck came in contact with the top two cables 

due to the ditch. However, most vehicle-cable impacts occur on the two middle cables (2
nd

 and 

3
rd

) so in order to cover the most common pickup-cable impact scenarios, the cable heights in the 

BARRIER VII model were adjusted to 35 in. and 25 in. from the 45 in. and 35 in. heights used in 

the calibration model. 

The baseline scenario was a 2270P pickup truck impacting the high tension cable barrier 

at a speed of 100 km/h (62 mph) and at an angle of 25 degrees. Ten various initial cable tensions 

from 0 psi to 10,000 psi at an equal interval were assigned to the high tension cable system. The 

maximum dynamic lateral deflection at each pre-tension level was recorded and plotted as in 

Figure 3.3. 

As shown in Figure 3.3, the reduction of the cable’s tension has a significant effect on the 

cable’s maximum lateral deflection during redirection of errant vehicles. The maximum lateral 

cable deflection increases 4 inches for every 1,000-lb drop in cable pre-tension. 
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Figure 3.3 Effect of Per-Cable Tension on Maximum Lateral Deflection-MwRSF HT Model 

3.4 Determination of Acceptable Anchorage Movement 

A significant advantage of high tension cable systems is that its redirective capability is 

not always lost after an impact. With sufficient pretension the cable will still have sufficient 

tension to hang in the air after impact. Cleary, if sufficient anchor movement occurs, which 

reduces or negates pretension, this advantage will be lost. 

In the section above, it was clearly demonstrated that the change in cable tension had a 

significant effect on the cable’s redirecting performance. The loss of cable tension is nearly 

linear to the increase of cable’s maximum lateral deflection. Since the tension loss is caused by 

the anchorage movement, the relationship between the anchorage movement and the cable lateral 

deflection can be determined. 
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T=E*∆L *A/L           Eq. 3 

 

T: Cable Tension 

E: Cable Young’s Modulus 

∆L: Cable Length Change 

A: Cable Cross Section Area 

L: Initial Cable Length 

 

Characteristic of the most common 3x7 cable, the average Young’s Modulus is around 

15,500 ksi, and the cross sectional area is 0.24 in
2
. To be consistent with the analysis in Chapter 

2, four cable systems with different lengths are investigated: 18 mile, ¼ mile, ½ mile, and 1 mile, 

and their results are shown in Figure 3.4. 

 
 

Figure 3.4 Cable Length Change vs. Cable Tension Change 
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Chapter 4 Evaluation of Alternate Cable Anchor Designs 

4.1 Anchor Alternatives 

Three different anchor design options were previously evaluated and tested by MwRSF, 

including a reinforced concrete block, a reinforced concrete shaft, and a driven steel post. The 

concrete block option mimics that of the old anchor designs. The reinforced concrete shaft 

provides a simplified concrete design alternative, but still relies on the use of cast-in-place 

concrete. The steel post design incorporates a large steel beam that is driven into the ground. 

4.2 Bogie Test 

In 2000, Midwest performed a series of bogie tests on 3 anchor designs: steel H-pile, 

concrete shaft, and concrete block, as shown in Figure 4.1 and Figure 4.2. All the three anchor 

designs were buried in the ground and were pulled by a 4,900-lb bogie vehicle at a target speed 

to provide a minimum dynamic load of 40,000 lbs. A string potentiometer and high speed video 

were used to monitor anchor motions during the tests. The force-deflection curves of each test 

are plotted in Figure 4.3. 

 

Figure 4.1 Cable Anchor Bogie Test Setup 
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In test CA No. 1, a W6x25 steel section with 36 ksi yield strength and a 96 in. overall 

length was selected for the anchor design. The addition of a 24 x 24 x ½ in. soil bearing plate 

provides further resistance against lateral force, as shown in the diagram on the left side of 

Figure 4.2. 

In test CA No.3, a concrete shaft with an 18 in. diameter and 72 in. total length was used 

as the anchor design. The anchor was reinforced with a spiral rebar cage fabricated with Grade 

60 steel. The spiral reinforcement was designed with a 1.5 in. clear cover over No. 3 rebar and 

ten No. 4 vertical bars equally spaced around the interior circumference. A concrete mix with 

compressive strength of 4,000 psi was also specified. Anchor rods embedded 12 in. into the 

structure were used to secure the cable anchor bracket, as shown in the middle of Figure 4.2. 

In test CA No. 4, a 60 x 40 x 24 in. concrete block, weighing approximately 5,000 lbs, 

was used as the anchor design. The block was fabricated using 4,000 psi minimum compressive 

strength concrete with No. 4 steel bars, Grade 60 for reinforcement, as shown in the right side of 

Figure 4.2. 
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Figure 4.3 Force-Deflection Curves, Bogie Test CA-1, CA-3, and CA-4 

 



MwRSF Report No. TRP-03-236-10 

June 2010 

21 

 

4.3 Conclusion 

The bogie test results are summarized by force-deflection curves, as shown in Fig 4.3. 

The reinforced concrete block option represented the strongest design and is characterized by a 

254 kN (57-kip) peak resisting force. The drilled shaft produced a maximum lateral force equal 

to 205 kN (46 kips). The driven steel post proved to be the weakest anchor and sustained a 187 

kN (42-kip) peak load. The results indicate that the minimum criterion set for the anchor force 

and displacement were met by the concrete shaft and concrete block anchor designs.  

However, while the concrete block anchor utilizes the most material and is costly to 

construct, the drilled shaft concrete anchor provides a more economical alternative by reducing 

the volume of concrete and simplifying excavation. This design provides a simple alternative and 

utilizes equipment that is usually available on a guardrail construction site. 

Considering the performance and cost, the concrete shaft anchor was determined to be the 

best option for this project. All of the analysis conducted utilized this anchor type. 
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Chapter 5 LPILE Analysis 

5.1 Problem Statement 

Based on the BARRIER VII analysis, the deflection of cable anchor will reduce the 

cable’s tension and compromise its redirecting performance during vehicle impacts. To assure 

the high tension cable system’s performance, an anchor’s deflection under both static 

temperature and dynamic loads should be limited to assure adequate performance. 

The lateral deflection of a relatively short pile foundation is affected by its diameter, 

embedment length and soil properties. Increases in diameter and/or depth increase lateral load 

capacity and decrease deflection. Optimization of foundation strength/stiffness versus cost must 

also consider construction equipment typically available on site and the expertise of the 

contractor. Most existing systems were tested under the requirements in the NCHRP 350 Report, 

meaning that the deflection of the foundations due to cable pretension and impact load are 

significantly less than may be anticipated with typical soils found along the roadside. To 

rationally design an anchor capable of reasonable deflections under temperature induced loads it 

is necessary to evaluate the anchor’s performance in various soil types. Three soil types 

considered were: NCHRP 350 soil, stiff clay, and sand. These three soil types cover the typical 

range of in-situ soils across the nation. 

5.2 LPILE Software Introduction 

To evaluate the range of foundation diameters and embedment lengths required for 

varying soil conditions, a parameter study was conducted to evaluate each of their relative 

influences. The study was performed using LPILE, a widely accepted analysis program for 

evaluating laterally loaded piles. LPILE has been validated for various foundations evaluated at 
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MwRSF over the past several years and the confidence in modeling standard strong soil under 

NCHRP Report 350 is high.  

Soil behavior is modeled with p-y curves internally generated by the computer program 

following published recommendations for various types of soils, and there are 10 embedded soil 

options in the LPILE Plus, as shown in Table 5.1. Alternatively, the user can manually introduce 

other p-y curves. Special procedures are programmed for developing p-y curves for layered soils 

and for rocks.  

 

Figure 5.1 Illustration of LPILE Plus Model 

 

Table 5.1 Embedded Soil Type Options in LPILE Plus 

Number 1 2 3 4 5 

Soil 

Type 

Soft clay 

(matlock) 

Stiff clay with 

free water 

(Reese) 

Stiff clay 

without free 

water(Reese) 

Sand 

(Reese) 

Strong Rock 

(Vuggy 

Limestone) 

Number 6 7 8 9 10 

Soil 

Type 

Silt  

(Cemented c-phi 

soil) 

API Sand  

(O'Neil) 

Week Rock 

(Reese) 

Liquefiable 

Sand 

Stiff Clay w/o 

free water using 

k 

 

Several types of pile-head boundary conditions may be selected, and the properties of the 

pile can also vary as a function of depth. LPILE Plus has capabilities to compute the ultimate 

moment capacity of a pile's section and can provide design information for rebar arrangement. 
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The user may optionally ask the program to generate and take into account nonlinear values of 

flexural stiffness (EI) which are generated internally based on specified pile dimensions, material 

properties, and cracked/uncracked concrete behavior. 

5.3 LPILE Plus Model Validation 

A validation was first performed to determine the proper soil input parameters. Since 

LPILE Plus cannot replicate dynamic tests, a static physical test was used instead of the bogie 

tests above to validate the LPILE Plus model. 

MwRSF previously performed a static soil test of New York Box Beam Terminal full-

scale test (NYBBT-4). An I-shape structural steel beam (W6x16) was embedded 40 in. into the 

ground with a static load applied laterally at 25 in. above the ground line, as shown in Figure 5.2. 

An LPILE Plus model was then developed to replicate NYBBT-4 soil static test.  

 
Figure 5.2 Test Setup of NYBBT-4 Soil Static Test 

 

 

5.3.1 H-Pile Geometry Size Input 

Because the recommendations for p-y curves are based strongly on the results of 

experiments with cylindrical shapes, all the piles in LPILE Plus are handled as circular cross-
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section pile, and it requires the diameter for the pile property input. All the non-circular cross-

section piles have to translate their cross-section geometric size into equivalent diameters (De). 

For H-Pile it can be assumed that the soil in the flanges will move with the pile and that it 

will behave as a rectangular shape, as shown in Figure 5.3. Thus, the equivalent diameter (De) of 

the H-pile can be computed by finding a circular section with the same area as the rectangular 

section (2). Thus, 

 De^2/4 =L x H                                                                                                         Eq. 4 

 
Figure 5.3 Illustration of H-Pile Movement Assumption in Soil 

 

For the W6x25 H-pile used in the static test of NYBBT-4, the cross section depth (L) and 

width (W) are 6.38 in. and 6.08 in., respectively. Thus, the diameter input of a W6x25 H-pile was 

determined to be 7.03 in. 
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Table 5.2 NYBBT-4 LPILE Plus Model Input-H-Pile Geometry 

Total Pile Length (in.) 40 

Number of Increments 100 

Distance from Pile Top to Ground Surface (in.) 0 

Combined Ground Slope and Batter Angles (degrees) 0 

Diameter (in.) 7.03 

Moment of Inertia (in.^4) 53.4 

Area (in.^2) 7.34 

Modulus of Elasticity (lbs/in.^2) 29,000,000 

 

5.3.2 Soil Input 

As mentioned previously, there are ten soils templates embedded in LPILE Plus. Type 7 

(API sand (O’Neil)) was determined to be close to NCHRP 350 soil. Three parameters are 

required for API sand option: Density, Internal Friction Angle, and p-y modulus (k) value. The 

density was determined from the test to be 0.08 lb/in
3
 and the friction angle was around 40 

degrees. 

The k value is the constant used in the equation Es=kx. This constant is in units of force 

per cubic length and depends on the type of soil and lateral loading imposed to the pile group. It 

has two different uses: (1) to define the initial (maximum) value of Es on internally-generated p-

y curves of stiff clays with free water and/or sands, and (2) to initialize the Es array for the first 

iteration of pile analysis. 

Suggested values of the parameter k used for sands are given in Table 5.3. Since the 350 

soil is a relatively dense soil, 225 (lb/in
3
) is a proper choice for the K value. Based on the 
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consideration that the K value of the 350 soil recommended by Dr. Rohde is 800 lb/in
3
 ±100 

lb/in
3
, four different K values (225, 700, 800, and 900) were run and compared in the simulation.  

Table 5.3 Suggested K values for Sands in LPILE Plus 

Relative Density Loose Medium Dense 

Submerged Sand 20 lb/in
3
 

5,430 kPa/m 

60 lb/in
3
 

16,300 kPa/m 

125 lb/in
3
 

33,900 kPa/m 

Sand Above Water Table 25 lb/in
3
 

6,790 kPa/m 

90 lb/in
3
 

24,430 kPa/m 

225 lb/in
3
 

61,000 kPa/m 

 

5.3.3 LPILE Plus Simulation Result 

The H-Pile’s deflections vs. the lateral forces using different k-values from the LPILE 

simulation were plotted against the physical test data in Figure 5.4 As shown in this figure, the 

simulation replicated the physical test data the best when k value equaled 900.  

 
Figure 5.4 Comparison of Static Load Test Results and LPILE Plus Simulation 

 

Though the LPILE Plus simulation presented good agreement with the physical static 

test, the maximum load from LPILE Plus simulation was only around 1,100 lbs. This value is 

close to the result calculated from Brom’s Equation (3), as shown in Eq. 5; while the maximum 
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load from the NYBBT-4 test was almost 7,000 lbs. The difference was believed to be caused by 

the complexity of the real-life test setup. In the LPILE Plus model, the H-pile was embedded in 

an ideally uniform 350 soil; while in the physical test the 350 soil only existed in a drill hole with 

a diameter of 36 in., as shown in the left-oriented diagram of Figure 5.2. Also there was a 

concrete slab nearby with a thickness of 24 in. Both the soil around the drill hole and the nearby 

thick concrete slab confined the 350 soil and affected its performance. At the beginning of the 

post rotation, the 350 soil was less affected by the surrounding confinement. The performance at 

the early stage was, for the most part, accurately captured by LPILE Plus simulation; the 

confinement effect caught up later on and resulted in large ultimate strength, as shown in Figure 

5.4. Thus, the simulation result from LPILE Plus was proven to be reliable and the K value of 

900 lb/in
3
 was used for 350 soil analysis herein. 

P = (g)(b)(L*L*L)(Kp)/(2e+2L) = (0.08) (5.68) (40*40*40) (4.6)/(2(25+40)) = 1029 lbs.    Eq. 5 

 

Where 

P: Ultimate Pile Load 

g: Soil Density 

b: Pile width 

L: Pile Embedment Length 

Kp: Coefficient of Passive Soil Pressure 

e: Load Height from Ground Line 

 

5.4 LPILE Plus Analysis of Concrete Shaft Anchor Design 

This evaluation was conducted under the worst case load, assuming the foundation was 

subjected to the impact of a 2270P pickup truck while the pretension was very high (-20 F). The 

lateral load resulting from this scenario is about 40 kips. Since the temperature and impact loads 

are approximately equal, this evaluation represents a factor of safety of about 2 in respect to 

either load independently.  
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Figure 5.5 Illustration of External Force on Anchor Head 

 

Head deflection is mainly caused by force in the lateral direction. In order to simplify the 

analysis, the baseline model for the LPILE analysis was set up as a concrete shaft embedded in 

soil with a lateral external force applied on the head of the concrete shaft at ground level, as 

shown in Figure 5.6.  

 

Figure 5.6 Illustration of LPILE Plus Model Setup 

 

The boundary condition in the LPILE Plus model used type 1 (force and moment), as 

shown in Figure 5.7. The failure of a foundation was considered at the point when the pile was 

pulled out, or “plowed,” through the soil. 

Three different soil conditions were investigated in the LPILE simulation: well graded 

crushed stone as defined in NCHRP Report 350, stiff clay, and sand. As drilled concrete piles 
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have become the foundation of choice with many of the Midwest Pooled Fund States this 

configuration was selected for evaluation. Three diameters (12, 18 and 24 in.) were evaluated at 

a variety of embedment depths. For a cylindrical concrete pile in the three soils analyzed herein, 

recommendations are based on acceptable deflection of the anchor as defined by the author (4 

in.) and anticipated loads. Based on a particular state’s weather, soil conditions and post impact 

maintenance goals, the results and subsequent recommendations will be dramatically different. 

 

 
Figure 5.7 Boundary Condition Input in LPILE Plus 

 

5.4.1 Anchor Deflection in 350 Soil 

The 350 soil was simulated using the API Sand model embedded in LPILE Plus, using 

the input parameters determined from the validation of the NYBBT-4 static soil test, as shown in 

Figure 5.8. The performance of the concrete shaft anchor was investigated with variable 

diameters and embedment depths in NCHRP 350 Soil. The simulation results are plotted in 

Figure 5.9 and Figure 5.10. 

 
Figure 5.8 NCNRP 350 Soil Model Input Parameters in LPILE Plus 
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Figure 5.9 Concrete Shaft Head Deflection vs. Embedment Depth in NCHRP 350 Soil 

 

As shown in Figure 5.9, the diameter of the pile clearly affected the pile’s failure 

embedment. To avoid being pulled out by the 40 kips lateral load, the shortest working pile 

length varied between 8 ft and 10 ft when the pile diameter was between 24 in and 12 in, as 

listed in Table 5.4. 

Table 5.4 Failure Embedment Depths of Concrete Shaft in NCHRP 350 Soil 

Diameter Size (in.) Failure Depth (ft.) 

24 7.9 

18 8.9 

12 10 

 

Meanwhile, the pile’s embedment depth also effects its head deflection. Generally, the 

deeper the embedment is, the less deflection the pile head will have. As is clearly shown in 

Figure 5.10, in this particular case (under 40 kips lateral load) the pile’s performance improves 
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with the growth of the pile length. However, the growth of pile embedment will encounter a 

critical depth, and the effect of the pile length on head deflection diminishes beyond this point. 

Out of consideration for cost, the pile length is not recommended to be deeper than this critical 

value. For a 12 in. diameter pile, the pile’s critical length in NCHRP 350 soil is around 14 ft, 

while the critical depths for the 18 in. and 24 in. diameter piles are both around 12 ft. The proper 

pile length should be chosen between the range of the pile’s failure embedment and critical 

embedment. 

 
Figure 5.10 Close-Up View of Concrete Shaft Head Deflection vs. Embedment Depth in 

NCHRP 350 Soil 

 

5.4.2 Anchor Deflection in Stiff Clay Soil 

The stiff clay was modeled using the model Stiff Clay w/o Free Water in LPILE Plus, 

and its input parameters are shown in Figure 5.11. A 40 kip lateral load was applied to the 

concrete head, and the head deflections of three different diameter piles are plotted with respect 

to their embedment depths in Figure 5.12.  
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As shown in Figure 5.12 and Table 5.5, the 12 in diameter pile failed when its 

embedment depth was less than 13.2 ft, while the 18 in diameter pile and 24 in diameter pile 

failed when the embedment was shorter than 10.8 ft and 9 ft respectively. Meanwhile, the pile’s 

performance did not significantly improve if the embedment exceeded a critical value. In stiff 

clay, the critical embedment for each size of concrete piles are listed in Table 5.6. For economic 

considerations, the pile’s lengths should not exceed the critical values. 

 

Figure 5.11 Stiff Clay Soil Model Input Parameters in LPILE Plus 
 

 
Figure 5.12 Concrete Shaft Head Deflection vs. Embedment Depth in Stiff Clay 
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Table 5.5 Failure Embedment Depths of Concrete Shaft in Stiff Clay 

Diameter Size (in.) Failure Depth (ft.) 

24 9 

18 10.8 

12 13.2 

 

Table 5.6 Critical Embedment Depths of Concrete Shaft in Stiff Clay 

Diameter Size (in.) Critical Depth (ft.) 

24 17 

18 19.2 

12 22.5 

 

5.4.3 Anchor Deflection in AASHTO A3 Sand  

The AASHTO A3 sand was chosen to represent the extreme weak soil, and was modeled 

using API Sand in LPILE Plus. The input parameters of the sand are shown in Figure 5.13. A 40 

kip lateral load was applied to the concrete head, and the head deflections of three different 

diameter piles are plotted with respect to their embedment depths in Figure 5.14.  

As it shown in Figure 5.14 and Table 5.7, the 12 in. diameter pile failed when its 

embedment was less than 11.2 ft, while the 18 in. diameter pile and 24 in. diameter pile failed 

when the embedment was shorter than 12.5 ft and 13.4 ft, respectively. Meanwhile, the pile’s 

performance did not significantly improve if the embedment went beyond a critical value. In stiff 

clay, the critical embedment for each concrete pile is listed in Table 5.8. For economical 

considerations, the pile lengths should not exceed the critical values. 
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Figure 5.13 Granular Rock Model Input Parameters in LPILE Plus 

 

 
Figure 5.14 Concrete Shaft Head Deflection vs. Embedment Depth in Granular Rock 

 

Table 5.7 Failure Embedment Depths of Concrete Shaft in Granular Rock 

Diameter Size (in.) Failure Depth (ft.) 

24 11.2 

18 12.5 

12 13.4 
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Table 5.8 Critical Embedment Depths of Concrete Shaft in Granular Rock 

Diameter Size (in.) Critical Depth (ft.) 

24 17.5 

18 18 

12 18.5 

 

5.5 Summary and Conclusion 

Based on the evaluation of previous MwRSF bogie tests, the concrete shaft was 

determined to be an appropriate choice for the high tension cable anchor design. However, the 

performance of the concrete shaft depends on its diameter, embedment depth, and the 

surrounding soil type. In order to determine the appropriate concrete shaft design that would 

assure the high tension cable’s performance while at the same time maintaining reasonable initial 

costs, LPILE Plus was used. Pile’s head deflections under external load were investigated in 

different soil types. 

After obtaining the thermal load and thermal deflection of cable from analytical 

calculations, the tension-deflection curves of cable under different temperatures was plotted 

using linear elastic assumption, as shown in Figure 3.4. By overlapping the cable tension-

deflection curves with the anchor load-deflections curves from physical tests and simulations, the 

actual tension in a cable anchored by a certain type of anchorage can be determined by locating 

the intersection of the two curves. Figures 4.1 and 4.2 are the plots of actual tensions under 

different temperatures in a cable anchored by the H-pile and concrete shaft used in the bogie tests 

CA-1 and CA-3. LPILE Plus simulation curves were also plotted in addition to the bogie test 

curves to serve as a reference.  
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Chapter 6 Conclusions 

Based on a particular state’s weather, soil conditions and post impact maintenance goals, 

the results and subsequent recommendations will be dramatically different. Therefore the results 

in Table 6.1 are only presented as a methodology to approach design and not specific design 

embedment for a given location. 

Because high tension cable foundations are subjected to static loads that may induce 

deflection and negatively impact the performance of the system, it is necessary to take steps 

beyond the evaluation of full-scale crash testing to evaluate the efficacy of the anchor design. As 

shown herein, consideration of weather, soil, and system details all serve a critical role in the 

design of an appropriate foundation. Based on a design load selected from initial cable tension, 

potential temperature induced and impact loads, an LPILE analysis using appropriate soil 

conditions yielded an effective evaluation of the required foundation diameter and embedment 

depth. This approach is certainly applicable for a range of different foundation configurations 

and cable geometries. 

In many cases the cost of incrementally increasing embedment depth to account for 

changing soil conditions may not be cost effective, as the engineering cost of evaluating specific 

site conditions will often exceed the cost of the foundation depth. Many states have selected a 

particular foundation design based on principals discussed herein for a “worst case” scenario and 

applied this design universally across all sites. These design decisions will of course be based on 

the breadth of soil conditions that are anticipated. 
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Table 6.1 Recommended Embedment for Cylindrical Concrete Foundation 

 

 
12 in. Diameter Shaft 18 in. Diameter Shaft 24 in. Diameter Shaft 

Minimum Embedment 

Depth (ft) 

Minimum Embedment 

Depth (ft) 

Minimum Embedment 

Depth (ft) 

350 Soil 

 
10 9 8 

Stiff Clay 13 11 9 

Sand 13.5 12.5 11.5 
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